Pathfinding by identified growth cones in the spinal cord of zebrafish embryos.

نویسندگان

  • J Y Kuwada
  • R R Bernhardt
  • A B Chitnis
چکیده

The spinal cord of early (18-20 hr) zebrafish embryos consists of a small number of neurons per hemisegment. The earliest neurons are identified and project growth cones that follow stereotyped, cell-specific pathways to reach their termination sites. We have studied the pathways taken by 4 of the early neurons in order to delineate the cells and structures their growth cones encounter during pathfinding. These neurons are 3 classes of commissural neurons (CoPA, CoSA, and CoB), which have contralateral longitudinal axons, and the VeLD neuron, which has an ipsilateral longitudinal axon. These growth cones encounter a defined set of cells and structures. Commissural growth cones appear to bypass the longitudinal axons of several identified neurons, including those from contralateral commissural neurons they encounter immediately following projection from the cell bodies. In contrast, these growth cones appear to extend in association with the longitudinal axons of commissural cells after crossing the ventral midline. Another set of cells of interest are the floor plate cells, a row of cells that constitute the ventral floor of the cord. At the floor plate growth cones exhibit cell-specific behaviors which may be influenced by the floor plate. (1) The floor plate may attract specific growth cones. The CoPA, CoSA, CoB, and VeLD growth cones all extend to the floor plate while other identified growth cones do not. (2) The floor plate may mediate cell-specific turns and induce some growth cones to cross the midline while inhibiting others from doing so. The commissural growth cones extend directly under the floor plate to cross the midline and turn anterior (CoPA and CoSA) or bifurcate (CoB); the VeLD growth cone turns away from the midline and extends posteriorly. (3) The floor plate may mediate changes in the substrate affinities of growth cones. Commissural growth cones bypass longitudinal pathways before they have encountered the floor plate, but not after. The description of pathfinding by these growth cones suggests that some elements in their environment are ignored while others are not. Most interestingly, a single structure (the floor plate) may mediate multiple, cell-specific effects on spinal growth cones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axonal outgrowth by identified neurons in the spinal cord of zebrafish embryos.

The spinal cord of early zebrafish embryos contains a small number of neurons per hemisegment. The earliest neurons are identifiable as individual neurons or small groups of homogeneous neurons and project growth cones that follow stereotyped, cell-specific pathways to their targets. These growth cones appear to bypass some axons but follow others during pathfinding, suggesting that they can di...

متن کامل

The notochord and floor plate guide growth cones in the zebrafish spinal cord.

Elimination of the floor plate, a row of distinctive cells at the ventral midline of the spinal cord, dramatically increased the frequency of errors made by specific growth cones in the zebrafish embryo. This demonstrated that the floor plate participated in guiding specific growth cones at the ventral midline of the spinal cord. However, since a significant proportion of these growth cones fol...

متن کامل

The zebrafish diwanka gene controls an early step of motor growth cone migration.

During vertebrate embryogenesis different classes of motor axons exit the spinal cord and migrate on common axonal paths into the periphery. Surprisingly little is known about how this initial migration of spinal motor axons is controlled by external cues. Here, we show that the diwanka gene is required for growth cone migration of three identified subtypes of zebrafish primary motoneurons. In ...

متن کامل

Growth cone guidance in the zebrafish central nervous system.

The accessibility and simplicity of the zebrafish embryo have allowed researchers to make a detailed characterization of pathfinding by identifiable growth cones. The growth cones follow precise cell-specific pathways to their targets. Analyses of pathfinding in mutant and experimentally manipulated wild type embryos have shown that growth cones accomplish this by interacting with specific cell...

متن کامل

Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells.

The role of the midline floor plate cells in the neuronal differentiation of the spinal cord was examined by comparing putative GABAergic neurons in wildtype zebrafish embryos with those in cyc-1 mutant embryos. The mutation produces a pleiotropic recessive lethal phenotype and is severe in rostral brain regions, but its direct effect in the caudal hindbrain and the spinal cord is apparently re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 1990